查看: 12|回复: 0

RK人工智能算法最全官方示例

[复制链接]

427

主题

267

回帖

2万

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
20857
发表于 22 小时前 | 显示全部楼层 |阅读模式
RKNN Model Zoo基于 RKNPU SDK 工具链开发, 提供了目前主流算法的部署例程. 例程包含导出RKNN模型, 使用 Python API, CAPI 推理 RKNN 模型的流程.
  • 支持 RK3562, RK3566, RK3568, RK3576, RK3588, RV1126B 平台。
  • 部分支持RV1103, RV1106
  • 支持 RV1109, RV1126, RK1808 平台。

源文地址:https://github.com/airockchip/rknn_model_zoo/tree/main

以下demo除了从对应的仓库导出模型, 也可从网盘 https://console.zbox.filez.com/l/8ufwtG (提取码: rknn) 下载模型文件.

CategoryNameDtypeModel Download LinkSupport platform
图像分类mobilenetFP16/INT8mobilenetv2-12.onnxRK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RV1103|RV1106
RK1808|RK3399PRO
RV1109|RV1126
图像分类resnetFP16/INT8resnet50-v2-7.onnxRK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
物体检测yolov5FP16/INT8./yolov5s_relu.onnx
./yolov5n.onnx
./yolov5s.onnx
./yolov5m.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RV1103|RV1106
RK1808|RK3399PRO
RV1109|RV1126
物体检测yolov6FP16/INT8./yolov6n.onnx
./yolov6s.onnx
./yolov6m.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
物体检测yolov7FP16/INT8./yolov7-tiny.onnx
./yolov7.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
物体检测yolov8FP16/INT8./yolov8n.onnx
./yolov8s.onnx
./yolov8m.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
物体检测yolov8_obbINT8./yolov8n-obb.onnxRK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
物体检测yolov10FP16/INT8./yolov10n.onnx
./yolov10s.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RV1103|RV1106
RK1808|RK3399PRO
RV1109|RV1126
物体检测yolo11FP16/INT8./yolo11n.onnx
./yolo11s.onnx
./yolo11m.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RV1103|RV1106
RK1808|RK3399PRO
RV1109|RV1126
物体检测yoloxFP16/INT8./yolox_s.onnx
./yolox_m.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
物体检测ppyoloeFP16/INT8./ppyoloe_s.onnx
./ppyoloe_m.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
物体检测yolo_worldFP16/INT8./yolo_world_v2s.onnx
./clip_text.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
人体关键点yolov8_poseINT8./yolov8n-pose.onnxRK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
图像分割deeplabv3FP16/INT8./deeplab-v3-plus-mobilenet-v2.pbRK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
图像分割yolov5_segFP16/INT8./yolov5n-seg.onnx
./yolov5s-seg.onnx
./yolov5m-seg.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
图像分割yolov8_segFP16/INT8./yolov8n-seg.onnx
./yolov8s-seg.onnx
./yolov8m-seg.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
图像分割ppsegFP16/INT8pp_liteseg_cityscapes.onnxRK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
图像分割mobilesamFP16mobilesam_encoder_tiny.onnx
mobilesam_decoder.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
人脸关键点RetinaFaceINT8RetinaFace_mobile320.onnx
RetinaFace_resnet50_320.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
车牌识别LPRNetFP16/INT8./lprnet.onnxRK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RV1103|RV1106
RK1808|RK3399PRO
RV1109|RV1126
文字检测PPOCR-DetFP16/INT8../ppocrv4_det.onnxRK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
文字识别PPOCR-RecFP16../ppocrv4_rec.onnxRK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
自然语言翻译lite_transformerFP16lite-transformer-encoder-16.onnx
lite-transformer-decoder-16.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
RK1808|RK3399PRO
RV1109|RV1126
图文匹配clipFP16./clip_images.onnx
./clip_text.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
语音识别wav2vec2FP16wav2vec2_base_960h_20s.onnxRK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
语音识别whisperFP16whisper_encoder_base_20s.onnx
whisper_decoder_base_20s.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
语音识别zipformerFP16encoder-epoch-99-avg-1.onnx
decoder-epoch-99-avg-1.onnx
joiner-epoch-99-avg-1.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
语音分类yamnetFP16yamnet_3s.onnxRK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
文字转语音mms_ttsFP16mms_tts_eng_encoder_200.onnx
mms_tts_eng_decoder_200.onnx
RK3562|RK3566|RK3568|RK3576|RK3588|RV1126B
Model performance benchmark(FPS)

demomodel_nameinputs_shape    dtypeRK3566
RK3568
RK3562RK3588
@single_core
RK3576
@single_core
RV1109RV1126RK1808
mobilenetmobilenetv2-12[1, 3, 224, 224]INT8180.7281.3450.7467.0212.9322.3170.3
resnetresnet50-v2-7[1, 3, 224, 224]INT837.954.9110.199.024.436.237.1
yolov5yolov5s_relu[1, 3, 640, 640]INT825.533.266.165.020.229.237.2
yolov5n[1, 3, 640, 640]INT839.747.482.5112.736.353.261.2
yolov5s[1, 3, 640, 640]INT819.323.648.457.513.620.028.2
yolov5m[1, 3, 640, 640]INT88.610.820.923.75.88.513.3
yolov6yolov6n[1, 3, 640, 640]INT848.856.4106.4109.137.856.866.8
yolov6s[1, 3, 640, 640]INT815.217.336.435.010.816.324.1
yolov6m[1, 3, 640, 640]INT87.28.617.817.45.68.311.5
yolov7yolov7-tiny[1, 3, 640, 640]INT827.936.572.774.815.422.437.2
yolov7[1, 3, 640, 640]INT84.65.911.413.03.34.87.4
yolov8yolov8n[1, 3, 640, 640]INT834.040.973.590.224.035.442.3
yolov8s[1, 3, 640, 640]INT815.118.438.040.88.913.119.1
yolov8m[1, 3, 640, 640]INT86.58.216.216.73.95.89.1
yolov8_obbyolov8n-obb[1, 3, 640, 640]INT833.941.374.090.225.137.342.8
yolov10yolov10n[1, 3, 640, 640]INT820.734.161.280.2///
yolov10s[1, 3, 640, 640]INT810.316.933.839.9///
yolo11yolo11n[1, 3, 640, 640]INT820.634.060.077.911.717.017.6
yolo11s[1, 3, 640, 640]INT810.216.733.038.25.07.38.4
yolo11m[1, 3, 640, 640]INT84.66.512.714.62.84.05.1
yoloxyolox_s[1, 3, 640, 640]INT815.218.337.141.510.615.723.0
yolox_m[1, 3, 640, 640]INT86.68.216.017.64.66.810.7
ppyoloeppyoloe_s[1, 3, 640, 640]INT817.120.032.541.311.216.421.1
ppyoloe_m[1, 3, 640, 640]INT87.89.215.817.85.27.79.4
yolo_worldyolo_world_v2s[1, 3, 640, 640]INT87.49.622.122.3///
clip_text[1, 20]FP1629.867.495.863.5///
yolov8_poseyolov8n-pose[1, 3, 640, 640]INT822.631.055.966.8///
deeplabv3deeplab-v3-plus-mobilenet-v2[1, 513, 513, 1]INT810.921.434.039.410.113.04.4
yolov5_segyolov5n-seg[1, 3, 640, 640]INT832.238.569.388.328.642.249.6
yolov5s-seg[1, 3, 640, 640]INT815.018.136.841.69.614.022.5
yolov5m-seg[1, 3, 640, 640]INT86.88.416.418.04.76.810.8
yolov8_segyolov8n-seg[1, 3, 640, 640]INT827.833.060.871.118.627.632.9
yolov8s-seg[1, 3, 640, 640]INT811.714.128.930.86.69.814.6
yolov8m-seg[1, 3, 640, 640]INT85.26.412.612.73.14.66.9
ppsegppseg_lite_1024x512[1, 3, 512, 512]INT85.913.935.733.618.427.120.9
mobilesammobilesam_encoder_tiny[1, 3, 448, 448]FP161.06.610.011.9///
mobilesam_decoder[1, 1, 112, 112]FP1624.369.6116.4108.6///
RetinaFaceRetinaFace_mobile320[1, 3, 320, 320]INT8156.4300.8227.2470.5144.8212.5198.5
RetinaFace_resnet50_320[1, 3, 320, 320]INT818.726.949.256.614.620.824.6
LPRNetlprnet[1, 3, 24, 94]FP16143.2420.6586.4647.830.6(INT8)47.6(INT8)30.1(INT8)
PPOCR-Detppocrv4_det[1, 3, 480, 480]INT822.128.050.764.311.016.114.2
PPOCR-Recppocrv4_rec[1, 3, 48, 320]FP1619.554.373.996.81.01.66.7
lite_transformerlite-transformer-encoder-16embedding-256, token-16FP16337.5725.8867.6784.122.735.498.3
lite-transformer-decoder-16embedding-256, token-16FP16142.5252.0343.8272.348.065.8109.9
clipclip_images[1, 3, 224, 224]FP162.33.46.56.7///
clip_text[1, 20]FP1629.766.696.063.7///
wav2vec2wav2vec2_base_960h_20s20s audioFP16RTF
0.817
RTF
0.323
RTF
0.133
RTF
0.073
///
whisperwhisper_base_20s20s audioFP16RTF
1.178
RTF
0.420
RTF
0.215
RTF
0.218
///
zipformerzipformer-bilingual-zh-en-tstreaming audioFP16RTF
0.196
RTF
0.116
RTF
0.065
RTF
0.082
///
yamnetyamnet_3s3s audioFP16RTF
0.013
RTF
0.008
RTF
0.004
RTF
0.005
///
mms_ttsmms_tts_eng_200token-200FP16RTF
0.311
RTF
0.138
RTF
0.069
RTF
0.069
///
  • 该性能数据基于各平台的最大NPU频率进行测试
  • 该性能数据指模型推理的耗时, 不包含前后处理的耗时
  • /表示当前版本暂不支持
Demo编译说明
对于 Linux 系统的开发板:
  1. ./build-linux.sh -t <target> -a <arch> -d <build_demo_name> [-b <build_type>] [-m]
  2.     -t : target (rk356x/rk3576/rk3588/rv1106/rv1126b/rv1126/rk1808)
  3.     -a : arch (aarch64/armhf)
  4.     -d : demo name
  5.     -b : build_type(Debug/Release)
  6.     -m : enable address sanitizer, build_type need set to Debug
  7. Note: 'rk356x' represents rk3562/rk3566/rk3568, 'rv1106' represents rv1103/rv1106, 'rv1126' represents rv1109/rv1126,'rv1126b' is different from 'rv1126'.

  8. # 以编译64位Linux RK3566的yolov5 demo为例:
  9. ./build-linux.sh -t rk356x -a aarch64 -d yolov5
复制代码


对于 Android 系统的开发板:
  1. # 对于 Android 系统的开发板, 首先需要根据实际情况, 设置安卓NDK编译工具的路径
  2. <font color="#ff0000">export</font> ANDROID_NDK_PATH=~/opts/ndk/android-ndk-r18b
  3. ./build-android.sh -t <target> -a <arch> -d <build_demo_name> [-b <build_type>] [-m]
  4.     -t : target (rk356x/rk3588/rk3576)
  5.     -a : arch (arm64-v8a/armeabi-v7a)
  6.     -d : demo name
  7.     -b : build_type (Debug/Release)
  8.     -m : enable address sanitizer, build_type need set to Debug

  9. # 以编译64位Android RK3566的yolov5 demo为例:
  10. ./build-android.sh -t rk356x -a arm64-v8a -d yolov5
复制代码

版本RKNPU2 SDKRKNPU1 SDK
2.3.2>=2.3.2>=1.7.5
2.3.0>=2.3.0>=1.7.5
2.2.0>=2.2.0>=1.7.5
2.1.0>=2.1.0>=1.7.5
2.0.0>=2.0.0>=1.7.5
1.6.0>=1.6.0-
1.5.0>=1.5.0>=1.7.3
RKNPU相关资料



回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|风火轮WIKI|手机版|小黑屋|深圳风火轮团队 ( 粤ICP备17095099号 )

GMT+8, 2026-1-18 22:40 , Processed in 0.069285 second(s), 22 queries .

快速回复 返回顶部 返回列表
 
【客服1】 商务合作 15289193
【客服2】 业务洽谈 13257599
【客服3】 售前咨询 510313198
【邮箱】
smartfire@smartfire.cn